Philadelphia University Faculty of Engineering & Technology – Mechatronics Department

First Semester 2023/2024

Course Details: Title: Intelligent Control Systems (0640734)

Prerequisite:

Credit Hours: 3 credit hours (16 weeks per semester, approximately 45 contact hours)

Textbooks:	 Intelligent Control Systems Using Soft Computing Methodologies, By: Ali Zilouchian & Mo Jamshidi, CRC Press, 2001, ISBN:0-8493-1875-0. Available online: <u>https://b-ok.asia/book/593496/3c6d6e?regionChanged=&redirect=7850341</u> Intelligent Control Systems with LabVIEW, By: Pedro Ponce-Cruz, Fernando D. Ramírez-Figueroa, Springer, 2010, ISBN 978-1-84882-683-0. Available online: <u>https://b-ok.asia/book/812190/493ebf?regionChanged=&redirect=7855146</u> 			
References:	 Leszek Rutkowski, "Flexible Neuro-Fuzzy Systems: Structures, Learning and Performance Evaluation", Kluwer Academic Publishers, USA, 2004. Mihir Sen, "Lecture notes on Intelligent Systems", 2006, Available online: http://www3.nd.edu/~msen/Teaching/IntSyst/IntSystNotes.pdf. Nguyen, Prasad, Walker, and Walker, "A First Course in Fuzzy and Neural Control", Chapman Hall /CRC Press 2003. Eric A. Wan, "Control Systems: Classical, Neural, and Fuzzy, Lecture Notes", Available online: http://www.ifko.ktu.lt/~raimund/SWOT_FCM/LECTURE%20NOTES.pdf 			
Course Description:	J I I B			
Website:				
Instructor:	5			
	Email: kma@philadelphia.edu.jo Office: Engineering building, Room 6713, Ext: 2504			
	Class hours: Saturday: 14:00-16:00 + Online Lecture			
	Office hours: Saturday & Monday: 12:00-14:00			

Course Outlines:

Week	Торіс		
1	An introduction to classical and intelligent control systems.		
2	Intelligent systems and applied artificial intelligence.		
3	Intelligent control concepts.		
4	Artificial neural networks: fundamentals.		
5	Artificial neural networks: architectures.		
6	Artificial neural networks: applications.		
7	Introduction to fuzzy logic.		
8	Fuzzy control and stability.		
9	Control applications of fuzzy logic.		
10	Neuro-fuzzy controller: theory and design.		
11	Neuro-fuzzy controller: applications.		
12	Probabilistic and evolutionary algorithms.		
13	Optimization of intelligent systems using GA.		
14	Intelligent control systems: research paper analysis		
15	Intelligent control systems: design methods.		
16	Project discussion		

Course Learning Outcomes with reference to ABET Student Outcomes:

Upon successful completion of this course, the student should:

1	Identify intelligent control systems, and the components of the system	[h, j]
2	Be able to design and implement an intelligent algorithms and systems	[a, b, c, e]
3	Understand the basic tools and techniques of intelligent control systems	[a, b]
4	Understand the operation of MC-based intelligent systems	[a]
5	Implementation of intelligent algorithms for real-time mechatronics systems	[a, b, c]
6	Have the ability to modify intelligent algorithms for control systems	[e]

Assessment Guidance:

Evaluation of the student performance during the semester (total final mark) will be conducted according to the following activities:

Sub-Exams:	The students will be subjected to two scheduled written exams, first
	exam and second exam during the semester. Each exam will cover
	materials given in lectures in the previous 3-4 weeks.

- Assignments: Each student must submit three assignments that cover subject topics and have added value to the lectures..
 - **Projects**: The project is an implementation of a simple embedded system. It is divided into three graded phases, Design, Simulation, and Implementation. Each student should work individually on the project and it should be submitted before or on a set agreed date. Cheating by copying homework or assignments from others is strictly forbidden and punishable by awarding the work with zero mark.
- **Collective** Brain storming and collective discussions will be carried out during **Participation:** any lecture. Individual student will be assessed accordingly.
 - **Final Exam:** The students will undergo a scheduled final exam at the end of the semester covering the whole materials taught in the course.

Grading policy:

-8 FJ -		
Mid Exam		30%
Projects		20%
Assignments		10%
Final Exam		40%
	Total:	100%

Attendance Regulation:

The semester has in total 45 credit hours. Total absence hours from classes and tutorials must not exceed 15% of the total credit hours. Exceeding this limit without a medical or emergency excuse approved by the deanship will prohibit the student from sitting the final exam and a zero mark will be recorded for the course. If the excuse is approved by the deanship the student will be considered withdrawn from the course.

October, 2023